Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607979

RESUMEN

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.


Asunto(s)
Ecosistema , Simbiosis , Simbiosis/genética , Ejercicio Físico , Flujo Genético , Mutación/genética
2.
Nat Food ; 4(8): 648-653, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563496

RESUMEN

Terrestrial controlled environment agriculture (CEA) will have an increasingly important role in food production. However, present CEA systems are energy- and resource-hungry and rarely profitable, requiring a step change in design and optimization. Here we argue that the unique nature of space controlled environment agriculture (SpaCEA), which needs to be both highly resource efficient and circular in design, presents an opportunity to develop intrinsically circular CEA systems. Life-cycle analysis tools should be used to optimize the provision and use of natural or electrical light, power, nutrients and infrastructure in CEA and/or SpaCEA systems, and to guide research and development into subsystems that bring strong environmental advantages. We suggest that SpaCEA public outreach can also be used to improve the perception of terrestrial CEA on Earth by using space as a gateway for exhibiting CEA food growing technologies. A substantial focus on SpaCEA development should be viewed as an efficient contribution to addressing major current CEA challenges.


Asunto(s)
Agricultura , Ambiente Controlado , Alimentos , Planeta Tierra
3.
Metabolites ; 13(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37110122

RESUMEN

Untargeted metabolomics is a powerful tool for measuring and understanding complex biological chemistries. However, employment, bioinformatics and downstream analysis of mass spectrometry (MS) data can be daunting for inexperienced users. Numerous open-source and free-to-use data processing and analysis tools exist for various untargeted MS approaches, including liquid chromatography (LC), but choosing the 'correct' pipeline isn't straight-forward. This tutorial, in conjunction with a user-friendly online guide presents a workflow for connecting these tools to process, analyse and annotate various untargeted MS datasets. The workflow is intended to guide exploratory analysis in order to inform decision-making regarding costly and time-consuming downstream targeted MS approaches. We provide practical advice concerning experimental design, organisation of data and downstream analysis, and offer details on sharing and storing valuable MS data for posterity. The workflow is editable and modular, allowing flexibility for updated/changing methodologies and increased clarity and detail as user participation becomes more common. Hence, the authors welcome contributions and improvements to the workflow via the online repository. We believe that this workflow will streamline and condense complex mass-spectrometry approaches into easier, more manageable, analyses thereby generating opportunities for researchers previously discouraged by inaccessible and overly complicated software.

4.
HardwareX ; 12: e00365, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36204423

RESUMEN

Adiabatic temperature rise is an important method for determining isocyanate conversion in polyurethane foam reactions as well as many other exothermic chemical reactions. Adiabatic temperature rise can be used in conjunction with change in height and mass measurements to gain understanding into the blowing and gelling reactions that occur during polyurethane foaming as well as give important information on cell morphology. FoamPi is an open-source Raspberry Pi device for monitoring polyurethane foaming reactions. The device effectively monitors temperature rise, change in foam height as well as changes in the mass during the reaction. Three Python scripts are also presented. The first logs raw data during the reaction. The second corrects temperature data such that it can be used in adiabatic temperature rise reactions for calculating isocyanate conversion; additionally this script reduces noise in all the data and removes erroneous readings. The final script extracts important information from the corrected data such as maximum temperature change and maximum height change as well as the time to reach these points. Commercial examples of such equipment exist however the price (>£10000) of these equipment make these systems inaccessible for many research laboratories. The FoamPi build presented is inexpensive (£350) and test examples are shown here to indicate the reproducibility of results as well as precision of the FoamPi.

5.
Front Plant Sci ; 13: 955985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092419

RESUMEN

Wheat yields have plateaued in the UK over the last 25 years, during which time most arable land has been annually cropped continuously with short rotations dominated by cereals. Arable intensification has depleted soil organic matter and biology, including mycorrhizas, which are affected by tillage, herbicides, and crop genotype. Here, we test whether winter wheat yields, mycorrhization, and shoot health can be improved simply by adopting less intensive tillage and adding commercial mycorrhizal inoculum to long-term arable fields, or if 3-year grass-clover leys followed direct drilling is more effective for biological regeneration of soil with reduced N fertiliser. We report a trial of mycorrhization, ear pathology, and yield performance of the parents and four double haploid lines from the Avalon x Cadenza winter wheat population in a long-term arable field that is divided into replicated treatment plots. These plots comprised wheat lines grown using ploughing or disc cultivation for 3 years, half of which received annual additions of commercial arbuscular mycorrhizal (AM) inoculum, compared to 3-year mown grass-clover ley plots treated with glyphosate and direct-drilled. All plots annually received 35 kg of N ha-1 fertiliser without fungicides. The wheat lines did not differ in mycorrhization, which averaged only 34% and 40% of root length colonised (RLC) in the ploughed and disc-cultivated plots, respectively, and decreased with inoculation. In the ley, RLC increased to 52%. Two wheat lines were very susceptible to a sooty ear mould, which was lowest in the ley, and highest with disc cultivation. AM inoculation reduced ear infections by >50% in the susceptible lines. In the ley, yields ranged from 7.2 to 8.3 t ha-1, achieving 92 to 106% of UK average wheat yield in 2018 (7.8 t ha-1) but using only 25% of average N fertiliser. Yields with ploughing and disc cultivation averaged only 3.9 and 3.4 t ha-1, respectively, with AM inoculum reducing yields from 4.3 to 3.5 t ha-1 in ploughed plots, with no effect of disc cultivation. The findings reveal multiple benefits of reintegrating legume-rich leys into arable rotations as part of a strategy to regenerate soil quality and wheat crop health, reduce dependence on nitrogen fertilisers, enhance mycorrhization, and achieve good yields.

7.
Plants People Planet ; 3(5): 588-599, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34853824

RESUMEN

Production and heavy application of chemical-based fertilizers to maintain crop yields is unsustainable due to pollution from run-off, high CO2 emissions, and diminishing yield returns. Access to fertilizers will be limited in the future due to rising energy costs and dwindling rock phosphate resources. A growing number of companies produce and sell arbuscular mycorrhizal fungal (AMF) inoculants, intended to help reduce fertilizer usage by facilitating crop nutrient uptake through arbuscular mycorrhizas. However, their success has been variable. Here, we present information about the efficacy of a commercially available AMF inoculant in increasing AMF root colonization and fungal contribution to plant nutrient uptake, which are critical considerations within the growing AMF inoculant industry. Summary Arable agriculture needs sustainable solutions to reduce reliance on large inputs of nutrient fertilizers while continuing to improve crop yields. By harnessing arbuscular mycorrhizal symbiosis, there is potential to improve crop nutrient assimilation and growth without additional inputs, although the efficacy of commercially available mycorrhizal inocula in agricultural systems remains controversial.Using stable and radioisotope tracing, carbon-for-nutrient exchange between arbuscular mycorrhizal fungi and three modern cultivars of wheat was quantified in a non-sterile, agricultural soil, with or without the addition of a commercial mycorrhizal inoculant.While there was no effect of inoculum addition on above-ground plant biomass, there was increased root colonization by arbuscular mycorrhizal fungi and changes in community structure. Inoculation increased phosphorus uptake across all wheat cultivars by up to 30%, although this increase was not directly attributable to mycorrhizal fungi. Carbon-for-nutrient exchange between symbionts varied substantially between the wheat cultivars.Plant tissue phosphorus increased in inoculated plants potentially because of changes induced by inoculation in microbial community composition and/or nutrient cycling within the rhizosphere. Our data contribute to the growing consensus that mycorrhizal inoculants could play a role in sustainable food production systems of the future.

8.
Sci Total Environ ; 801: 149659, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416602

RESUMEN

Soils hold three quarters of the total organic carbon (OC) stock in terrestrial ecosystems and yet we fundamentally lack detailed mechanistic understanding of the turnover of major soil OC pools. Black carbon (BC), the product of the incomplete combustion of fossil fuels and biomass, is ubiquitous in soils globally. Although BC is a major soil carbon pool, its effects on the global carbon cycle have not yet been resolved. Soil BC represents a large stable carbon pool turning over on geological timescales, but research suggests it can alter soil biogeochemical cycling including that of soil OC. Here, we established two soil microcosm experiments: experiment one added 13C OC to soil with and without added BC (soot or biochar) to investigate whether it suppresses OC mineralisation; experiment two added 13C BC (soot) to soil to establish whether it is mineralised in soil over a short timescale. Gases were sampled over six-months and analysed using isotope ratio mass spectrometry. In experiment one we found that the efflux of 13C OC from soil decreased over time, but the addition of soot to soil significantly reduced the mineralisation of OC from 32% of the total supplied without soot to 14% of the total supplied with soot. In contrast, there was not a significant difference after the addition of biochar in the flux of 13C from the OC added to the soil. In experiment two, we found that the efflux 13C from soil with added 13C soot significantly differed from the control, but this efflux declined over time. There was a cumulative loss of 0.17% 13C from soot over the experiment. These experimental results represent a step-change in understanding the influence of BC continuum on carbon dynamics, which has major consequences for the way we monitor and manage soils for carbon sequestration in future.


Asunto(s)
Suelo , Hollín , Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Hollín/análisis
9.
Curr Biol ; 31(17): 3721-3728.e4, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256017

RESUMEN

Partner switching plays an important role in the evolution of symbiosis, enabling local adaptation and recovery from the breakdown of symbiosis. Because of intergenomic epistasis, partner-switched symbioses may possess novel combinations of phenotypes but may also exhibit low fitness due to their lack of recent coevolutionary history. Here, we examine the structure and mechanisms of intergenomic epistasis in the Paramecium-Chlorella symbiosis and test whether compensatory evolution can rescue initially low fitness partner-switched symbioses. Using partner-switch experiments coupled with metabolomics, we show evidence for intergenomic epistasis wherein low fitness is associated with elevated symbiont stress responses either in dark or high irradiance environments, potentially owing to mismatched light management traits between the host and symbiont genotypes. Experimental evolution under high light conditions revealed that an initially low fitness partner-switched non-native host-symbiont pairing rapidly adapted, gaining fitness equivalent to the native host-symbiont pairing in less than 50 host generations. Compensatory evolution took two alternative routes: either hosts evolved higher symbiont loads to mitigate for their new algal symbiont's poor performance, or the algal symbionts themselves evolved higher investment in photosynthesis and photoprotective traits to better mitigate light stress. These findings suggest that partner switching combined with rapid compensatory evolution can enable the recovery and local adaptation of symbioses in response to changing environments.


Asunto(s)
Chlorella , Paramecium , Adaptación Fisiológica , Chlorella/fisiología , Paramecium/genética , Fotosíntesis/fisiología , Simbiosis/fisiología
10.
Front Plant Sci ; 12: 625260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732274

RESUMEN

Modern feed quality sorghum grain has been bred to reduce anti-nutrients, most conspicuously condensed tannins, but its inclusion in the diets of monogastric animals can still result in variable performance that is only partially understood. Sorghum grain contains several negative intrinsic factors, including non-tannin phenolics and polyphenols, phytate, and kafirin protein, which may be responsible for these muted feed performances. To better understand the non-tannin phenolic and polyphenolic metabolites that may have negative effects on nutritional parameters, the chemical composition of sorghum grain polyphenol extracts from three commercial varieties (MR-Buster, Cracka, and Liberty) was determined through the use of an under-studied, alternative analytical approach involving Fourier-transform infrared (FT-IR) spectroscopy and direct ionization mass spectrometry. Supervised analyses and interrogation of the data contributing to variation resulted in the identification of a variety of metabolites, including established polyphenols, lignin-like anti-nutrients, and complex sugars, as well as high levels of fatty acids which could contribute to nutritional variation and underperformance in monogastrics. FT-IR and mass spectrometry could both discriminate among the different sorghum varieties indicating that FT-IR, rather than more sophisticated chromatographic and mass spectrometric methods, could be incorporated into quality control applications.

11.
Anal Biochem ; 606: 113859, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738211

RESUMEN

Phytases are important commercial enzymes that catalyze the dephosphorylation of myo-inositol hexakisphosphate (phytate) to its lower inositol phosphate (IP) esters, IP6 to IP1. Digestion of phytate by Citrobacter braakii 6-phytase deviates significantly from monophasic Michaelis-Menten kinetics. Analysis of phytate digestion using isothermal titration calorimetry (ITC) using the single injection method produced a thermogram with two peaks consistent with two periods of high enzyme activity. Continuous-flow electrospray ionization time-of-flight mass spectroscopy (ESI-ToF-MS) provided real-time analysis of phytase catalysis. It was able to show that the first two cleavage steps were rapid and concurrent but the third cleavage step from IP4 to IP3 was slow. The third (IP4 to IP3), fourth (IP3 to IP2) and fifth (IP2 to IP1) cleavages were effectively sequential due to the preferred association of the more phosphorylated species with the phytase catalytic site. This created a bottleneck during the cleavage of IP4 to IP3 until the point at which IP4 was exhausted and was followed by the rapid cleavage of IP3 to IP2, which was observed as the second peak in the ITC thermogram. This work illustrates the importance of an orthogonal approach when studying non-specific or complex enzyme catalyzed reactions.


Asunto(s)
6-Fitasa/química , 6-Fitasa/metabolismo , Biocatálisis , Calorimetría/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Citrobacter/enzimología , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Cinética , Fosforilación , Ácido Fítico/química , Ácido Fítico/metabolismo
12.
Nat Plants ; 6(4): 349-354, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203292

RESUMEN

How species coexist despite competing for the same resources that are in limited supply is central to our understanding of the controls on biodiversity1,2. Resource partitioning may facilitate coexistence, as co-occurring species use different sources of the same limiting resource3,4. In plant communities, however, direct evidence for partitioning of the commonly limiting nutrient, phosphorus (P), has remained scarce due to the challenges of quantifying P acquisition from its different chemical forms present in soil5. To address this, we used 33P to directly trace P uptake from DNA, orthophosphate and calcium phosphate into monocultures and mixed communities of plants growing in grassland soil. We show that co-occurring plants acquire P from these important organic and mineral sources in different proportions, and that differences in P source use are consistent with the species' root adaptations for P acquisition. Furthermore, the net benefit arising from niche plasticity (the gain in P uptake for a species in a mixed community compared to monoculture) correlates with species abundance in the wild, suggesting that niche plasticity for P is a driver of community structure. This evidence for P resource partitioning and niche plasticity may explain the high levels of biodiversity frequently found in P-limited ecosystems worldwide6,7.


Asunto(s)
Fósforo/metabolismo , Plantas/metabolismo , Suelo/química , Biodiversidad , ADN de Plantas/metabolismo , Ecosistema , Compuestos de Fósforo/metabolismo
13.
Curr Biol ; 30(2): 328-334.e4, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31902722

RESUMEN

Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3-6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9-11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature.


Asunto(s)
Evolución Biológica , Chlorella/metabolismo , Paramecium/metabolismo , Simbiosis , Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis
14.
FEMS Microbiol Lett ; 366(12)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271421

RESUMEN

Evolutionary theory suggests that the conditions required for the establishment of mutualistic symbioses through mutualism alone are highly restrictive, often requiring the evolution of complex stabilising mechanisms. Exploitation, whereby initially the host benefits at the expense of its symbiotic partner and mutual benefits evolve subsequently through trade-offs, offers an arguably simpler route to the establishment of mutualistic symbiosis. In this review, we discuss the theoretical and experimental evidence supporting a role for host exploitation in the establishment and evolution of mutualistic microbial symbioses, including data from both extant and experimentally evolved symbioses. We conclude that exploitation rather than mutualism may often explain the origin of mutualistic microbial symbioses.


Asunto(s)
Microbiología , Simbiosis/fisiología , Evolución Biológica
15.
New Phytol ; 223(2): 908-921, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30919981

RESUMEN

Liverworts, which are amongst the earliest divergent plant lineages and important ecosystem pioneers, often form nutritional mutualisms with arbuscular mycorrhiza-forming Glomeromycotina and fine-root endophytic Mucoromycotina fungi, both of which coevolved with early land plants. Some liverworts, in common with many later divergent plants, harbour both fungal groups, suggesting these fungi may complementarily improve plant access to different soil nutrients. We tested this hypothesis by growing liverworts in single and dual fungal partnerships under a modern atmosphere and under 1500 ppm [CO2 ], as experienced by early land plants. Access to soil nutrients via fungal partners was investigated with 15 N-labelled algal necromass and 33 P orthophosphate. Photosynthate allocation to fungi was traced using 14 CO2 . Only Mucoromycotina fungal partners provided liverworts with substantial access to algal 15 N, irrespective of atmospheric CO2 concentration. Both symbionts increased 33 P uptake, but Glomeromycotina were often more effective. Dual partnerships showed complementarity of nutrient pool use and greatest photosynthate allocation to symbiotic fungi. We show there are important functional differences between the plant-fungal symbioses tested, providing new insights into the functional biology of Glomeromycotina and Mucoromycotina fungal groups that form symbioses with plants. This may explain the persistence of the two fungal lineages in symbioses across the evolution of land plants.


Asunto(s)
Carbono/metabolismo , Glomeromycota/fisiología , Hepatophyta/microbiología , Mucor/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/microbiología , Simbiosis , Biomasa , Endófitos/ultraestructura , Glomeromycota/ultraestructura , Modelos Lineales , Mucor/ultraestructura , Micelio/metabolismo
16.
ISME J ; 13(7): 1647-1658, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30796337

RESUMEN

The rhizobiome is an important regulator of plant growth and health. Plants shape their rhizobiome communities through production and release of primary and secondary root metabolites. Benzoxazinoids (BXs) are common tryptophan-derived secondary metabolites in grasses that regulate belowground and aboveground biotic interactions. In addition to their biocidal activity, BXs can regulate plant-biotic interactions as semiochemicals or within-plant defence signals. However, the full extent and mechanisms by which BXs shape the root-associated microbiome has remained largely unexplored. Here, we have taken a global approach to examine the regulatory activity of BXs on the maize root metabolome and associated bacterial and fungal communities. Using untargeted mass spectrometry analysis in combination with prokaryotic and fungal amplicon sequencing, we compared the impacts of three genetic mutations in different steps in the BX pathway. We show that BXs regulate global root metabolism and concurrently influence the rhizobiome in a root type-dependent manner. Correlation analysis between BX-controlled root metabolites and bacterial taxa suggested a dominant role for BX-dependent metabolites, particularly flavonoids, in constraining a range of soil microbial taxa, while stimulating methylophilic bacteria. Our study supports a multilateral model by which BXs control root-microbe interactions via a global regulatory function in root secondary metabolism.


Asunto(s)
Bacterias/efectos de los fármacos , Benzoxazinas/farmacología , Hongos/efectos de los fármacos , Microbiota/efectos de los fármacos , Raíces de Plantas/metabolismo , Zea mays/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Benzoxazinas/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Poaceae/metabolismo , Metabolismo Secundario , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
17.
J Plant Physiol ; 234-235: 54-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30665048

RESUMEN

Nutrients are heterogeneously distributed in the soil environment. Plants have evolved a variety of mechanisms to maximise their ability to compete for limited resources, with differential root growth considered among the more important mechanisms. Despite the significant costs of root growth, little data is available regarding carbon (C) allocation to roots growing in heterogeneous conditions. Here, we investigate the allocation of recently assimilated C in Poa annua plants growing in uniform or heterogeneous nutrient conditions. In the first experiment we grew plants in split-root boxes, providing N either equally between the two chambers (0.5 mg/0.5 mg, 8 mg/8 mg) or with one side receiving more N (0.5 mg/8 mg, 8 mg/0.5 mg), and quantified C allocation and N uptake using 13CO2 and K15NO3. Where N was supplied equally to the two chambers, C was allocated equally to the roots irrespective of the total N supply. However, the 13C label was preferentially allocated (60:40) to high-N roots in the unequal treatments. N uptake was a function of local supply and was not affected by N supply to the roots in the other chamber. C allocation had no discernible effect on N uptake. In the second experiment, we tested whether differential N supply would lead to increased root growth in the high-N side. In this experiment, equal amounts of N were supplied to all plants as ammonium, with half receiving an equal distribution to the two root chambers (50/50), while the other half received an unequal supply (94/6). While no difference in root growth was noted in 50/50 plants, a 60:40 mass allocation was noted from day six onwards in plants receiving the 94/6 N supply. Despite increased root growth in the high-N side, the plants receiving the 94/6 treatment could not achieve the same shoot mass or N concentration as the 50/50 plants. No difference in total C allocation to the roots between treatments was noted in the first experiment, and no difference in total root mass between treatments was found in the second experiment, suggesting that root C supply was source-limited, while allocation to specific roots was strongly influenced by sink strength. Differential C allocation appears to be an important pre-requisite for increased root growth in N-rich patches.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Poa/metabolismo , Isótopos de Carbono , Isótopos de Nitrógeno , Poa/crecimiento & desarrollo
18.
Front Microbiol ; 9: 1461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018611

RESUMEN

We assess whether arbuscular mycorrhizal fungi (AMF) improve growth, nutritional status, phenology, flower and fruit production, and disease resistance in woody perennial crops using apple (Malus pumila) as a study system. In a fully factorial experiment, young trees were grown for 3 years with or without AMF (Funneliformis mosseae and Rhizophagus irregularis), and with industrial standard fertiliser applications or restricted fertiliser (10% of standard). We use two commercial scions (Dabinett and Michelin) and rootstocks (MM111 and MM106). Industrial standard fertiliser applications reduced AMF colonisation and root biomass, potentially increasing drought sensitivity. Mycorrhizal status was influenced by above ground genotypes (scion type) but not rootstocks, indicating strong interactions between above and below ground plant tissue. The AMF inoculation significantly increased resistance to Neonectria ditissima, a globally economically significant fungal pathogen of apple orchards, but did not consistently alter leaf nutrients, growth, phenology or fruit and flower production. This study significantly advances understanding of AMF benefits to woody perennial crops, especially increased disease resistance which we show is not due to improved tree nutrition or drought alleviation. Breeding programmes and standard management practises can limit the potential for these benefits.

19.
BMC Evol Biol ; 18(1): 108, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986646

RESUMEN

BACKGROUND: Symbiosis is a major source of evolutionary innovation and, by allowing species to exploit new ecological niches, underpins the functioning of ecosystems. The transition from free-living to obligate symbiosis requires the alignment of the partners' fitness interests and the evolution of mutual dependence. While symbiotic taxa are known to vary widely in the extent of host-symbiont dependence, rather less is known about variation within symbiotic associations. RESULTS: Using experiments with the microbial symbiosis between the protist Paramecium bursaria and the alga Chlorella, we show variation between pairings in host-symbiont dependence, encompassing facultative associations, mutual dependence and host dependence upon the symbiont. Facultative associations, that is where both the host and the symbiont were capable of free-living growth, displayed higher symbiotic growth rates and higher per host symbiont loads than those with greater degrees of dependence. CONCLUSIONS: These data show that the Paramecium-Chlorella interaction exists at the boundary between facultative and obligate symbiosis, and further suggest that the host is more likely to evolve dependence than the algal symbiont.


Asunto(s)
Chlorella/fisiología , Paramecium/microbiología , Simbiosis/fisiología , Animales , Clorofila/metabolismo , Fluorescencia , Paramecium/crecimiento & desarrollo
20.
Sci Rep ; 7(1): 16409, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180695

RESUMEN

Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat.


Asunto(s)
Resistencia a la Enfermedad , Micorrizas/fisiología , Desarrollo de la Planta , Rhizobiaceae/fisiología , Simbiosis , Análisis de Varianza , Interacciones Huésped-Patógeno , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...